a^2+16a=225

Simple and best practice solution for a^2+16a=225 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+16a=225 equation:



a^2+16a=225
We move all terms to the left:
a^2+16a-(225)=0
a = 1; b = 16; c = -225;
Δ = b2-4ac
Δ = 162-4·1·(-225)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1156}=34$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-34}{2*1}=\frac{-50}{2} =-25 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+34}{2*1}=\frac{18}{2} =9 $

See similar equations:

| 5(9x-4)+15=220 | | -7(x+4)+3x+5=5x+6 | | 2y2-y-90=0 | | 3x+30=1 | | -8(x+3)+2x+7=7x+6 | | (2/x)=5/(x+6) | | 3n=n-11 | | 14w+19w-4+1=-5w+1-4 | | 3x+30=130 | | 3c-3=-12 | | 3x—2=5 | | t/4+5=10 | | (20+x)+2x=180 | | 3.00=0.25x | | 8x+36=6x+50 | | 3.00=0/25x | | x-1=3+3 | | 3+4x=2x | | 3.00=0.45s | | 3(2x-4)=2(x+8) | | 5x-30=3x+2 | | m+7=2+m+4 | | 2y-y-90=0 | | 3x-10+50+2x+90=180 | | 2y-y=90 | | x^2+3x+2.25=4.25 | | 6z-93=99 | | 6x-147=69 | | X=24-2/3(x-18)-1/2(5x-48) | | 4z-64=72 | | 8+3y=-5 | | 3(4b+1)-9b=6(2-b) |

Equations solver categories